1.4: Separable Equations

Definition 1. A first-order differential equation $d y / d x=f(x, y)$ is separable if the function f can be written as the product of two independent functions of one variable each; i.e. $f(x, y)=g(x) h(y)$. In this case, we simply separate the y 's and x 's and integrate them separately.

Example 1. Find the general solution for the differential equation

$$
\frac{d y}{d x}=-6 x y
$$

Example 2. Solve the differential equation

$$
\frac{d y}{d x}=\frac{4-2 x}{3 y^{2}-5}
$$

Exercise 1. Find all solutions to the differential equation

$$
\frac{d y}{d x}=6 x(y-1)^{2 / 3}
$$

Exercise 2. Find all solutions to the differential equation

$$
2 \sqrt{x} \frac{d y}{d x}=\cos ^{2} y, \quad y(4)=\pi / 4
$$

Natural Growth and Decay. The differential equation

$$
\begin{equation*}
\frac{d x}{d t}=k x \quad(k \text { is a constant }) \tag{1}
\end{equation*}
$$

serves as a mathematical model for a wide variety of natural phenomena, such as, population growth, compound interest, radioactive decay or drug elimination to name a few. Solve the differential equation given in (1).

Example 3. A specimen of charcoal found at Stonehenge turns out to contain 63% as much ${ }^{14} \mathrm{C}$ as a sample of present-day charcoal of equal mass. Given that the half-life of ${ }^{14} \mathrm{C}$ is 5700 years, we can solve for the constant $k \approx 0.0001216$. What is the age of the sample?

Example 4. Recall that Newton's law of cooling is given by the differential equation

$$
\frac{d T}{d t}=k(A-T)
$$

for a positive constant k, where $T(t)$ is the temperature of a body immersed in a medium of constant temperature A. Consider the following: A 4-lb roast, initially at $50^{\circ} \mathrm{F}$, is placed in a $375^{\circ} \mathrm{F}$ oven at $5: 00 \mathrm{pm}$. After 75 minutes it is found that the temperature $T(t)$ of the roast is $125^{\circ} \mathrm{F}$. When will the roast be $150^{\circ} \mathrm{F}$ (medium rare)?

Torricelli's Law. Suppose that a water tank has a hole with area a at the bottom. Let $y(t)$ represent the depth of water and $V(t)$ represent the volume of water in the tank. It is true, under ideal conditions, that the velocity of water exiting through the hole is

$$
v=c \sqrt{2 g y} .
$$

(We take $c=1$ for simplicity.) We arrive at the equation

$$
\frac{d V}{d t}=-a v \quad \text { or equivalently } \quad A(y) \frac{d y}{d t}=-a v
$$

Exercise 3. A hemispherical bowl has to radius 4 ft and at time $t=0$ is full of water. At that moment a circular hole with diameter 1 in . is opened in the bottom of the tank. How long will it take for all the water to drain from the tank?

Homework. 1-15, 19-23, 33-45, 49-61 (odd)

